Abstrakti
Dimensionality reduction is one of the basic operations in the toolbox of data analysts and designers of machine learning and pattern recognition systems. Given a large set of measured variables but few observations, an obvious idea is to reduce the degrees of freedom in the measurements by representing them with a smaller set of more condensed variables. Another reason for reducing the dimensionality is to reduce computational load in further processing. A third reason is visualization.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 5714379 |
Sivut | 100-104 |
Sivumäärä | 5 |
Julkaisu | IEEE Signal Processing Magazine |
Vuosikerta | 28 |
Numero | 2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2011 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Tutkimusalat
- Data models
- Data visualization
- Information retrieval
- Machine learning
- Manifolds
- Probabilistic logic
- Visualization
Julkaisufoorumi-taso
- Ei tasoa