Distributed-order diffusion equations and multifractality: Models and solutions

Trifce Sandev, Aleksei V. Chechkin, Nickolay Korabel, Holger Kantz, Igor M. Sokolov, Ralf Metzler

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    92 Sitaatiot (Scopus)

    Abstrakti

    We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.

    AlkuperäiskieliEnglanti
    Artikkeli042117
    Sivumäärä19
    JulkaisuPhysical Review E : Statistical, Nonlinear, and Soft Matter Physics
    Vuosikerta92
    Numero4
    DOI - pysyväislinkit
    TilaJulkaistu - 7 lokak. 2015
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Distributed-order diffusion equations and multifractality: Models and solutions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä