Dynamic Network-Assisted D2D-Aided Coded Distributed Learning

Nikita Zeulin, Olga Galinina, Nageen Himayat, Sergey Andreev, Robert W. Heath

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

1 Lataukset (Pure)

Abstrakti

Today, numerous machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of wireless networks. Distributed real-time ML solutions are highly susceptible to the so-called straggler effect caused by resource heterogeneity, which can be mitigated by various computation offloading mechanisms that severely impact communication efficiency, especially in large-scale scenarios. To reduce the communication overhead, we leverage device-to-device (D2D) connectivity, which enhances spectrum utilization and allows for efficient data exchange between proximate devices. In particular, we design a novel D2D-aided coded distributed learning method named D2D-CDL for efficient load balancing across devices. The proposed solution captures system dynamics, including data (time-varying learning model, irregular intensity of data arrivals), device (diverse computational resources and volume of training data), and deployment (different locations and D2D graph connectivity). To decrease the number of communication rounds, we derive an optimal compression rate, which minimizes the processing time. The resulting optimization problem provides suboptimal compression parameters that improve the total training time. Our proposed method is particularly beneficial for real-time collaborative applications, where users continuously generate training data.
AlkuperäiskieliEnglanti
Sivut3352-3367
JulkaisuIEEE Transactions on Communications
Vuosikerta71
Numero6
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 3

Sormenjälki

Sukella tutkimusaiheisiin 'Dynamic Network-Assisted D2D-Aided Coded Distributed Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä