Abstrakti
Prior austenite grain size has a marked effect on the hardenability, strength, and impact toughness properties of steels. This study was conducted in order to understand the effect of prior austenite grain size and morphology on the mechanical properties and abrasive wear performance of an ultra-high strength steel. A commercial quenched 500 HB grade wear-resistant steel was selected for the study: the steel was austenitized at two different temperatures and compared to the original, as-received quenched condition. The resulting mean prior austenite grain size was ranging from 14 μm to 34 μm. The decrease in grain size improved the low-temperature impact toughness properties. A high stress abrasive wear testing method with natural granite abrasives was utilized for the evaluation of abrasive wear resistance. The results suggest that decreasing the prior austenite grain size improves the abrasive wear resistance with similar hardness level martensitic steels. In addition, high-resolution electron backscatter diffraction measurements revealed formation of ultra-fine grain structures in the severely deformed regions of the wear surfaces.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 203336 |
Sivumäärä | 13 |
Julkaisu | Wear |
Vuosikerta | 454-455 |
Varhainen verkossa julkaisun päivämäärä | 16 toukok. 2020 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 elok. 2020 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Rahoitus
This research has been done within the program Steel Ecosystem for Focused Applications (StEFA). We gratefully acknowledge financial support from Business Finland and the companies participating in the program. The corresponding author would also like to express his gratitude for the support provided by the University of Oulu Graduate School through the Advanced Materials Doctoral Program (ADMA-DP). Jenny and Antti Wihuri Foundation , Tauno Tönning Foundation , and Walter Ahlström Foundation are also acknowledged for their financial support to the corresponding author.
Julkaisufoorumi-taso
- Jufo-taso 2
!!ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanics of Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Materials Chemistry