Efficient Bitrate Ladder Construction using Transfer Learning and Spatio-Temporal Features

Ali Falahati, Mohammad Karim Safavi, Ardavan Elahi, Farhad Pakdaman, Moncef Gabbouj

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

Providing high-quality video with efficient bitrate is a main challenge in video industry. The traditional one-size-fits-all scheme for bitrate ladders is inefficient and reaching the best content-aware decision is computationally impractical due to extensive encodings required. To mitigate this, we propose a bitrate and complexity efficient bitrate ladder prediction method using transfer learning and spatio-temporal features. We propose: (1) using feature maps from well-known pre-trained DNNs to predict rate-quality behavior with limited training data; and (2) improving highest quality rung efficiency by predicting minimum bitrate for top quality and using it for the top rung. The method tested on 102 video scenes demonstrates 94.1% reduction in complexity versus brute-force at 1.71% BD-Rate expense. Additionally, transfer learning was thoroughly studied through four networks and ablation studies.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 13th Iranian and 3rd International Conference on Machine Vision and Image Processing, MVIP 2024
KustantajaIEEE
Sivut1-7
ISBN (elektroninen)979-8-3503-5049-4
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIranian and International Conference on Machine Vision and Image Processing - Tehran, Iran
Kesto: 6 maalisk. 20247 maalisk. 2024

Julkaisusarja

NimiIranian Conference on Machine Vision and Image Processing, MVIP
ISSN (painettu)2166-6776
ISSN (elektroninen)2166-6784

Conference

ConferenceIranian and International Conference on Machine Vision and Image Processing
Maa/AlueIran
KaupunkiTehran
Ajanjakso6/03/247/03/24

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Software

Sormenjälki

Sukella tutkimusaiheisiin 'Efficient Bitrate Ladder Construction using Transfer Learning and Spatio-Temporal Features'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä