TY - JOUR
T1 - Endothelial function in spontaneously hypertensive rats
T2 - influence of quinapril treatment
AU - Kähönen, M
AU - Mäkynen, H
AU - Wu, X
AU - Arvola, P
AU - Pörsti, I
PY - 1995/7
Y1 - 1995/7
N2 - 1. Angiotensin converting enzyme (ACE) inhibition has been shown to restore the impaired endothelial function in hypertension, but the mediators underlying the promoted endothelium-dependent dilatation have not been fully characterized. Therefore, we investigated the effects of 10-week-long quinapril therapy (10 mg kg-1 day-1) on responses of mesenteric arterial rings in vitro from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. 2. Endothelium-dependent relaxations of noradrenaline (NA)-precontracted rings to acetylcholine (ACh) and adenosine 5'-diphosphate (ADP) were similar in WKY rats and quinapril-treated SHR and more pronounced than in untreated SHR. The nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) attenuated the relaxations in both WKY groups and quinapril-treated SHR, and completely inhibited them in untreated SHR. When endothelium-dependent hyperpolarization was prevented by precontraction of the preparations with potassium chloride (KCl), no differences were found in relaxations to ACh and ADP between the study groups. In addition, in NA-precontracted rings the L-NAME- and indomethacin-resistant relaxations to ACh were partially prevented by apamin, an inhibitor of calcium-activated potassium channels. 3. Interestingly, in quinapril-treated SHR but not in the other groups, exogenous bradykinin potentiated the relaxations to ACh in both NA- and KCl-precontracted arterial rings. 4. Contractile sensitivity of endothelium-intact rings to NA was reduced in SHR by quinapril, and was more effectively increased by L-NAME in quinapril-treated than untreated SHR. 5. In conclusion, since the relaxations to ACh and ADP in quinapril-treated SHR were augmented in the absence and presence of NO synthesis inhibition but not under conditions which prevented hyperpolarization, enhanced endothelium-dependent relaxation after long-term ACE inhibition can be attributed to increased endothelium-dependent hyperpolarization. However, the potentiation of the response to ACh by exogenous bradykinin in quinapril-treated SHR, as well as the increased attenuating effect of the endothelium on NA-induced contractions in these animals appear to result from enhanced endothelium-derived NO release.
AB - 1. Angiotensin converting enzyme (ACE) inhibition has been shown to restore the impaired endothelial function in hypertension, but the mediators underlying the promoted endothelium-dependent dilatation have not been fully characterized. Therefore, we investigated the effects of 10-week-long quinapril therapy (10 mg kg-1 day-1) on responses of mesenteric arterial rings in vitro from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. 2. Endothelium-dependent relaxations of noradrenaline (NA)-precontracted rings to acetylcholine (ACh) and adenosine 5'-diphosphate (ADP) were similar in WKY rats and quinapril-treated SHR and more pronounced than in untreated SHR. The nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) attenuated the relaxations in both WKY groups and quinapril-treated SHR, and completely inhibited them in untreated SHR. When endothelium-dependent hyperpolarization was prevented by precontraction of the preparations with potassium chloride (KCl), no differences were found in relaxations to ACh and ADP between the study groups. In addition, in NA-precontracted rings the L-NAME- and indomethacin-resistant relaxations to ACh were partially prevented by apamin, an inhibitor of calcium-activated potassium channels. 3. Interestingly, in quinapril-treated SHR but not in the other groups, exogenous bradykinin potentiated the relaxations to ACh in both NA- and KCl-precontracted arterial rings. 4. Contractile sensitivity of endothelium-intact rings to NA was reduced in SHR by quinapril, and was more effectively increased by L-NAME in quinapril-treated than untreated SHR. 5. In conclusion, since the relaxations to ACh and ADP in quinapril-treated SHR were augmented in the absence and presence of NO synthesis inhibition but not under conditions which prevented hyperpolarization, enhanced endothelium-dependent relaxation after long-term ACE inhibition can be attributed to increased endothelium-dependent hyperpolarization. However, the potentiation of the response to ACh by exogenous bradykinin in quinapril-treated SHR, as well as the increased attenuating effect of the endothelium on NA-induced contractions in these animals appear to result from enhanced endothelium-derived NO release.
KW - Aging/physiology
KW - Animals
KW - Antihypertensive Agents/pharmacology
KW - Biological Factors/physiology
KW - Blood Pressure/drug effects
KW - Body Weight/drug effects
KW - Bradykinin/pharmacology
KW - Endothelins/physiology
KW - Endothelium, Vascular/drug effects
KW - Epoprostenol/physiology
KW - Hypertension/physiopathology
KW - In Vitro Techniques
KW - Isoquinolines/pharmacology
KW - Male
KW - Mesenteric Arteries/drug effects
KW - Muscle, Smooth, Vascular/drug effects
KW - Nitric Oxide/physiology
KW - Organ Size/drug effects
KW - Quinapril
KW - Rats
KW - Rats, Inbred SHR
KW - Rats, Inbred WKY
KW - Tetrahydroisoquinolines
U2 - 10.1111/j.1476-5381.1995.tb15012.x
DO - 10.1111/j.1476-5381.1995.tb15012.x
M3 - Article
C2 - 8548188
VL - 115
SP - 859
EP - 867
IS - 5
ER -