Energy-dependent diffusion in a soft periodic Lorentz gas

S. Gil-Gallegos, R. Klages, J. Solanpää, E. Räsänen

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

2 Sitaatiot (Scopus)


The periodic Lorentz gas is a paradigmatic model to examine how macroscopic transport emerges from microscopic chaos. It consists of a triangular lattice of circular hard scatterers with a moving point particle. Recently this system became relevant as a model for electronic transport in low-dimensional nanosystems such as molecular graphene. However, to more realistically mimic such dynamics, the hard Lorentz gas scatterers should be replaced by soft potentials. Here we study diffusion in a soft Lorentz gas with Fermi potentials under variation of the total energy of the moving particle. Our goal is to understand the diffusion coefficient as a function of the energy. In our numerical simulations we identify three different dynamical regimes: (i) the onset of diffusion at small energies; (ii) a transition where for the first time a particle reaches the top of the potential, characterized by the diffusion coefficient abruptly dropping to zero; and (iii) diffusion at high energies, where the diffusion coefficient increases according to a power law in the energy. All these different regimes are understood analytically in terms of simple random walk approximations.

JulkaisuEuropean Physical Journal: Special Topics
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Yleinen materiaalitiede
  • Yleinen fysiikka ja tähtitiede
  • Physical and Theoretical Chemistry


Sukella tutkimusaiheisiin 'Energy-dependent diffusion in a soft periodic Lorentz gas'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä