Abstrakti
In this paper, we propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data. We further extend it to video data by proposing a two-stage tracking-based scheme for detection refinement. The proposed method can be used as a standalone approach for improving object detection performance, or as a part of a framework for faster bounding box annotation in unseen datasets, assuming that the objects of interest are those present in some common public datasets.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Kustantaja | IEEE |
Sivut | 1515-1519 |
Sivumäärä | 5 |
Vuosikerta | 2021-June |
ISBN (elektroninen) | 978-1-7281-7605-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Acoustics, Speech and Signal Processing - Metro Toronto Convention Centre, Toronto, Kanada Kesto: 6 kesäk. 2021 → 11 kesäk. 2021 https://2021.ieeeicassp.org |
Julkaisusarja
Nimi | Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
ISSN (painettu) | 1520-6149 |
ISSN (elektroninen) | 2379-190X |
Conference
Conference | IEEE International Conference on Acoustics, Speech and Signal Processing |
---|---|
Maa/Alue | Kanada |
Kaupunki | Toronto |
Ajanjakso | 6/06/21 → 11/06/21 |
www-osoite |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering