Abstrakti
Estimating the statistics of single-cell RNA numbers has become a key source of information on gene expression dynamics. One of the most informative methods of in vivo single-RNA detection is MS2d-GFP tagging. So far, it requires microscopy and laborious semi-manual image analysis, which hampers the amount of collectable data. To overcome this limitation, we present a new methodology for quantifying the mean, standard deviation, and skewness of single-cell distributions of RNA numbers, from flow cytometry data on cells expressing RNA tagged with MS2d-GFP. The quantification method, based on scaling flow-cytometry data from microscopy single-cell data on integer-valued RNA numbers, is shown to readily produce precise, big data on in vivo single-cell distributions of RNA numbers and, thus, can assist in studies of transcription dynamics.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 105745 |
Julkaisu | Journal of Microbiological Methods |
Vuosikerta | 166 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2019 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Tutkimusalat
- Flow cytometry
- MS2d-GFP RNA tagging
- Single-cell RNA numbers
- Time-lapse microscopy
Julkaisufoorumi-taso
- Jufo-taso 1