Evaluating Classification Systems Against Soft Labels with Fuzzy Precision and Recall

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

21 Lataukset (Pure)

Abstrakti

Classification systems are normally trained by minimizing the cross-entropy between system outputs and reference labels, which makes the Kullback-Leibler divergence a natural choice for measuring how closely the system can follow the data. Precision and recall provide another perspective for measuring the performance of a classification system. Non-binary references can arise from various sources, and it is often beneficial to use the soft labels for training instead of the binarized data. However, the existing definitions for precision and recall require binary reference labels, and binarizing the data can cause erroneous interpretations. We present a novel method to calculate precision, recall and F-score without quantizing the data. The proposed metrics extend the well established metrics as the definitions coincide when used with binary labels. To understand the behavior of the metrics we show simple example cases and an evaluation of different sound event detection models trained on real data with soft labels.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 8th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2023)
ToimittajatMagdalena Fuentes, Toni Heittola, Keisuke Imoto, Annamaria Mesaros, Archontis Politis, Romain Serizel, Tuomas Virtanen
KustantajaTampere University
Sivut46-50
ISBN (elektroninen)978-952-03-3171-9
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaWorkshop on Detection and Classification of Acoustic Scenes and Events - Tampere, Suomi
Kesto: 20 syysk. 202322 syysk. 2023

Conference

ConferenceWorkshop on Detection and Classification of Acoustic Scenes and Events
Maa/AlueSuomi
KaupunkiTampere
Ajanjakso20/09/2322/09/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Evaluating Classification Systems Against Soft Labels with Fuzzy Precision and Recall'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä