Exemplar-based speech enhancement for deep neural network based automatic speech recognition

Deepak Baby, Jort F. Gemmeke, Tuomas Virtanen, Hugo Van Hamme

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    16 Sitaatiot (Scopus)

    Abstrakti

    Deep neural network (DNN) based acoustic modelling has been successfully used for a variety of automatic speech recognition (ASR) tasks, thanks to its ability to learn higher-level information using multiple hidden layers. This paper investigates the recently proposed exemplar-based speech enhancement technique using coupled dictionaries as a pre-processing stage for DNN-based systems. In this setting, the noisy speech is decomposed as a weighted sum of atoms in an input dictionary containing exemplars sampled from a domain of choice, and the resulting weights are applied to a coupled output dictionary containing exemplars sampled in the short-time Fourier transform (STFT) domain to directly obtain the speech and noise estimates for speech enhancement. In this work, settings using input dictionary of exemplars sampled from the STFT, Mel-integrated magnitude STFT and modulation envelope spectra are evaluated. Experiments performed on the AURORA-4 database revealed that these pre-processing stages can improve the performance of the DNN-HMM-based ASR systems with both clean and multi-condition training.

    AlkuperäiskieliEnglanti
    OtsikkoICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
    KustantajaIEEE
    Sivut4485-4489
    Sivumäärä5
    ISBN (painettu)9781467369978
    DOI - pysyväislinkit
    TilaJulkaistu - 4 elok. 2015
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING -
    Kesto: 1 tammik. 19001 tammik. 2000

    Conference

    ConferenceIEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING
    Ajanjakso1/01/001/01/00

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Signal Processing
    • Software
    • Electrical and Electronic Engineering

    Sormenjälki

    Sukella tutkimusaiheisiin 'Exemplar-based speech enhancement for deep neural network based automatic speech recognition'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä