Abstrakti
Explainable Artificial Intelligence (XAI) has the potential to revolutionize healthcare by providing more transparent, trustworthy, and understandable predictions made by AI models. To this end, the present study aims to develop an explainable NLP model for predicting patient admissions to the emergency department based on triage notes. We utilize transformer models to leverage the extensive textual data captured in triage notes, while also delivering interpretable results by using the LIME approach. The results show that the proposed model provides satisfactory accuracy along with an interpretable understanding of the factors contributing to patient admission. In general, this work highlights the potential of NLP in improving patient care and decision-making in emergency medicine.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023 |
Toimittajat | Jingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, Rakesh Agrawal |
Kustantaja | IEEE |
Sivut | 4843-4847 |
Sivumäärä | 5 |
ISBN (elektroninen) | 979-8-3503-2445-7 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Big Data - , Italia Kesto: 15 jouluk. 2023 → 18 jouluk. 2023 |
Conference
Conference | IEEE International Conference on Big Data |
---|---|
Lyhennettä | BigData |
Maa/Alue | Italia |
Ajanjakso | 15/12/23 → 18/12/23 |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Artificial Intelligence
- Computer Networks and Communications
- Computer Science Applications
- Information Systems
- Information Systems and Management
- Safety, Risk, Reliability and Quality