Explainable NLP Model for Predicting Patient Admissions at Emergency Department Using Triage Notes

Emilien Arnaud, Mahmoud Elbattah, Pedro A. Moreno-Sanchez, Gilles Dequen, Daniel Aiham Ghazali

    Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

    1 Sitaatiot (Scopus)
    16 Lataukset (Pure)

    Abstrakti

    Explainable Artificial Intelligence (XAI) has the potential to revolutionize healthcare by providing more transparent, trustworthy, and understandable predictions made by AI models. To this end, the present study aims to develop an explainable NLP model for predicting patient admissions to the emergency department based on triage notes. We utilize transformer models to leverage the extensive textual data captured in triage notes, while also delivering interpretable results by using the LIME approach. The results show that the proposed model provides satisfactory accuracy along with an interpretable understanding of the factors contributing to patient admission. In general, this work highlights the potential of NLP in improving patient care and decision-making in emergency medicine.

    AlkuperäiskieliEnglanti
    OtsikkoProceedings - 2023 IEEE International Conference on Big Data, BigData 2023
    ToimittajatJingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, Rakesh Agrawal
    KustantajaIEEE
    Sivut4843-4847
    Sivumäärä5
    ISBN (elektroninen)979-8-3503-2445-7
    DOI - pysyväislinkit
    TilaJulkaistu - 2023
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE International Conference on Big Data - , Italia
    Kesto: 15 jouluk. 202318 jouluk. 2023

    Conference

    ConferenceIEEE International Conference on Big Data
    LyhennettäBigData
    Maa/AlueItalia
    Ajanjakso15/12/2318/12/23

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Artificial Intelligence
    • Computer Networks and Communications
    • Computer Science Applications
    • Information Systems
    • Information Systems and Management
    • Safety, Risk, Reliability and Quality

    Sormenjälki

    Sukella tutkimusaiheisiin 'Explainable NLP Model for Predicting Patient Admissions at Emergency Department Using Triage Notes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä