Abstrakti
We present a technique to improve the accuracy and to reduce the computational labor in the calculation of long-range interactions in systems with periodic boundary conditions. We extend the well-known Ewald method by using a linear combination of screening Gaussian charge distributions instead of only one. This enables us to find faster converging real-space and reciprocal space summations. The combined simplicity and efficiency of our method is demonstrated, and the scheme is readily applicable to large-scale periodic simulations, classical as well as quantum. Moreover, apart from the required a priori optimization the method is straightforward to include in most routines based on the Ewald method within, e.g., density-functional, molecular dynamics, and quantum Monte Carlo calculations.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 64–68 |
Julkaisu | Computer Physics Communications |
Vuosikerta | 206 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 17 toukok. 2016 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Hardware and Architecture
- Yleinen fysiikka ja tähtitiede