Facilitating mmWave Mesh Reliability in PPDR Scenarios Utilizing Artificial Intelligence

Rustam Pirmagomedov, Dmitri Moltchanov, Aleksandr Ometov, Khan Muhammad, Sergey Andreev, Yevgeni Koucheryavy

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

5 Sitaatiot (Scopus)
18 Lataukset (Pure)

Abstrakti

The use of advanced AR/VR applications may benefit the efficiency of collaborative public protection and disaster relief (PPDR) missions by providing better situational awareness and deeper real-time immersion. The resultant bandwidth-hungry traffic calls for the use of capable millimeter-wave (mmWave) radio technologies, which are however susceptible to link blockage phenomena. The latter may significantly reduce the network reliability and thus degrade the performance of PPDR applications. Efficient mmWave-based mesh topologies need to, therefore, be constructed that employ advanced multi-connectivity mechanisms to improve the levels of connectivity. This work conceptualizes predictive blockage avoidance by leveraging emerging artificial intelligence (AI) capabilities. In particular, AI-aided blockage prediction permits the mesh network to reconfigure itself by establishing alternative connections proactively, thus reducing the chances of a harmful link interruption. An illustrative scenario related to a fire suppression mission is then addressed by demonstrating that the proposed approach dramatically improves the connection reliability in dynamic mmWave-based deployments.
AlkuperäiskieliEnglanti
Sivut180700-180712
JulkaisuIEEE Access
Vuosikerta7
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

Sormenjälki

Sukella tutkimusaiheisiin 'Facilitating mmWave Mesh Reliability in PPDR Scenarios Utilizing Artificial Intelligence'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä