Fast hybrid Bayesian integrative learning of multiple gene regulatory networks for type 1 diabetes

Bochao Jia, Faming Liang, TEDDY Study Group

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

Motivated by the study of the molecular mechanism underlying type 1 diabetes with gene expression data collected from both patients and healthy controls at multiple time points, we propose a hybrid Bayesian method for jointly estimating multiple dependent Gaussian graphical models with data observed under distinct conditions, which avoids inversion of high-dimensional covariance matrices and thus can be executed very fast. We prove the consistency of the proposed method under mild conditions. The numerical results indicate the superiority of the proposed method over existing ones in both estimation accuracy and computational efficiency. Extension of the proposed method to joint estimation of multiple mixed graphical models is straightforward.

AlkuperäiskieliEnglanti
Sivut233-249
Sivumäärä17
JulkaisuBIOSTATISTICS
Vuosikerta22
Numero2
DOI - pysyväislinkit
TilaJulkaistu - huhtik. 2021
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Fast hybrid Bayesian integrative learning of multiple gene regulatory networks for type 1 diabetes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä