Abstrakti
In many evolutionary computation systems, parent selection methods can affect, among other things, convergence to a solution. In this paper, we present a study comparing the role of two commonly used parent selection methods in evolving machine learning pipelines in an automated machine learning system called Tree-based Pipeline Optimization Tool (TPOT). Specifically, we demonstrate, using experiments on multiple datasets, that lexicase selection leads to significantly faster convergence as compared to NSGA-II in TPOT. We also compare the exploration of parts of the search space by these selection methods using a trie data structure that contains information about the pipelines explored in a particular run.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Genetic Programming |
Alaotsikko | 26th European Conference, EuroGP 2023, Held as Part of EvoStar 2023, Proceedings |
Toimittajat | Gisele Pappa, Mario Giacobini, Zdenek Vasicek |
Kustantaja | Springer |
Sivut | 165-181 |
Sivumäärä | 17 |
ISBN (elektroninen) | 978-3-031-29573-7 |
ISBN (painettu) | 978-3-031-29572-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Conference on Genetic Programming (Part of EvoStar) - Brno, Tshekki Kesto: 12 huhtik. 2023 → 14 huhtik. 2023 Konferenssinumero: 6th |
Julkaisusarja
Nimi | Lecture Notes in Computer Science |
---|---|
Vuosikerta | 13986 |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Conference
Conference | European Conference on Genetic Programming (Part of EvoStar) |
---|---|
Lyhennettä | EuroGP |
Maa/Alue | Tshekki |
Kaupunki | Brno |
Ajanjakso | 12/04/23 → 14/04/23 |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Theoretical Computer Science
- Yleinen tietojenkäsittelytiede