Fault detection of elevator system using profile extraction and deep autoencoder feature extraction for acceleration and magnetic signals

Krishna Mishra, Tomi Krogerus, Kalevi Huhtala

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

In this paper, we propose a new algorithm for data extraction from time series data, and furthermore automatic calculation of highly informative deep features to be used in fault detection. In data extraction elevator start and stop events are extracted from sensor data including both acceleration and magnetic signals. In addition, a generic deep autoencoder model is also developed for automated feature extraction from the extracted profiles. After this, extracted deep features are classified with random forest algorithm for fault detection. Sensor data are labelled as healthy and faulty based on the maintenance actions recorded. The remaining healthy data are used for validation of the model to prove its efficacy in terms of avoiding false positives. We have achieved nearly 100% accuracy in fault detection along with avoiding false positives based on new extracted deep features, which outperforms results using existing features. Existing features are also classified with random forest to compare results. Our developed algorithm provides better results due to the new deep features extracted from the dataset when compared to existing features. This research will help various predictive maintenance systems to detect false alarms, which will in turn reduce unnecessary visits of service technicians to installation sites.
AlkuperäiskieliEnglanti
Otsikko23rd International Conference Information Visualisation
AlaotsikkoIV 2019, 2-5 July 2019, Paris, France
ToimittajatFatma Bouali
JulkaisupaikkaParis, France
KustantajaIEEE
Sivut139-144
Sivumäärä6
ISBN (elektroninen)978-1-7281-2838-2
ISBN (painettu)978-1-7281-2839-9
DOI - pysyväislinkit
TilaJulkaistu - 5 heinäk. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference Information Visualisation -
Kesto: 6 elok. 2019 → …

Julkaisusarja

NimiProceedings : International Conference on Information Visualisation
ISSN (painettu)1550-6037
ISSN (elektroninen)2375-0138

Conference

ConferenceInternational Conference Information Visualisation
Ajanjakso6/08/19 → …

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Yleinen tietojenkäsittelytiede

Sormenjälki

Sukella tutkimusaiheisiin 'Fault detection of elevator system using profile extraction and deep autoencoder feature extraction for acceleration and magnetic signals'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Fault detection of elevator systems using deep autoencoder feature extraction

    Mishra, K., Krogerus, T. & Huhtala, K., 31 toukok. 2019, IEEE 13th International Conference on Research Challenges in Information Science: RCIS 2019, 29-31 May 2019, Brussels, Belgium. Heng, S. (toim.). 2019 toim. Brussels, Belgium: IEEE, Vuosikerta 13. s. 43-48 6 Sivumäärä

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    12 Sitaatiot (Scopus)

Siteeraa tätä