Finite-dimensional regulators for a class of regular hyperbolic PDE systems

Xiadong Xu, Seppo Pohjolainen, Stevan Dubljevic

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    2 Sitaatiot (Scopus)

    Abstrakti

    In this paper, the output regulation problem is addressed for a class of linear hyperbolic infinite-dimensional systems with spatially varying coefficients modelling a large class of convection-dominated transport reaction systems. In particular, distributed parameter systems with bounded input and unbounded output operators are considered. First, we demonstrate a general conclusion about the exponential stability of the considered system by relating the stability to the solution of an associated differential equation. Based on the assumption that the hyperbolic system satisfies the exponential stability conditions, the main manuscript contribution is the development of two novel finite-dimensional regulators, output and error feedback regulators, such that the controlled output of the plant tracks a reference signal generated by a known signal process (exosystem). In order to guarantee the feasibility of the proposed regulators, the solvability of the corresponding Sylvester equations is discussed and the solvability conditions are provided. Finally, simulations of output regulation of an axial dispersion reactor and a relevant numerical example illustrate the main results and performance of the proposed regulators synthesis.
    AlkuperäiskieliEnglanti
    Sivut1-18
    Sivumäärä18
    JulkaisuInternational Journal of Control
    DOI - pysyväislinkit
    TilaJulkaistu - 30 elok. 2017
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Finite-dimensional regulators for a class of regular hyperbolic PDE systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä