Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

24 Sitaatiot (Scopus)
19 Lataukset (Pure)

Abstrakti

This paper presents a novel systematic methodology to obtain new simple and tight approximations, lower bounds, and upper bounds for the Gaussian Q-function, and functions thereof, in the form of a weighted sum of exponential functions. They are based on minimizing the maximum absolute or relative error, resulting in globally uniform error functions with equalized extrema. In particular, we construct sets of equations that describe the behaviour of the targeted error functions and solve them numerically in order to find the optimized sets of coefficients for the sum of exponentials. This also allows for establishing a trade-off between absolute and relative error by controlling weights assigned to the error functions' extrema. We further extend the proposed procedure to derive approximations and bounds for any polynomial of the Q-function, which in turn allows approximating and bounding many functions of the Q-function that meet the Taylor series conditions, and consider the integer powers of the Q-function as a special case. In the numerical results, other known approximations of the same and different forms as well as those obtained directly from quadrature rules are compared with the proposed approximations and bounds to demonstrate that they achieve increasingly better accuracy in terms of the global error, thus requiring significantly lower number of sum terms to achieve the same level of accuracy than any reference approach of the same form.
AlkuperäiskieliEnglanti
Sivut 6514-6524
Sivumäärä11
JulkaisuIEEE Transactions on Communications
Vuosikerta68
Numero10
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

Sormenjälki

Sukella tutkimusaiheisiin 'Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä