Graph measures with high discrimination power revisited: A random polynomial approach

Matthias Dehmer, Zengqiang Chen, Frank Emmert-Streib, Yongtang Shi, Shailesh Tripathi

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    6 Sitaatiot (Scopus)

    Abstrakti

    Finding graph measures with high discrimination power has been triggered by searching for so-called complete graph invariants. In a series of papers, we have already investigated highly discriminating measures to distinguish graphs (networks) based on their topology. In this paper, we propose an approach where the graph measures are based on the roots of random graph polynomials. The polynomial coefficients have been defined by utilizing information functionals which capture structural information of the underlying networks. Our numerical results obtained by employing exhaustively generated graphs reveal that the new approach outperforms earlier results in the literature.

    AlkuperäiskieliEnglanti
    Sivut407-414
    Sivumäärä8
    JulkaisuInformation Sciences
    Vuosikerta467
    DOI - pysyväislinkit
    TilaJulkaistu - 1 lokak. 2018
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Rahoitus

    Matthias Dehmer thanks the Austrian Science Funds for supporting this work (project P26142). Yongtang Shi was supported by National Natural Science Foundation of China and PCSIRT.

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Software
    • Control and Systems Engineering
    • Theoretical Computer Science
    • Computer Science Applications
    • Information Systems and Management
    • Artificial Intelligence

    Sormenjälki

    Sukella tutkimusaiheisiin 'Graph measures with high discrimination power revisited: A random polynomial approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä