Hermitian normalized Laplacian matrix for directed networks

Guihai Yu, Matthias Dehmer, Frank Emmert-Streib, Herbert Jodlbauer

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

6 Sitaatiot (Scopus)

Abstrakti

In this paper, we extend and generalize the spectral theory of undirected networks towards directed networks by introducing the Hermitian normalized Laplacian matrix for directed networks. In order to start, we discuss the Courant–Fischer theorem for the eigenvalues of Hermitian normalized Laplacian matrix. Based on the Courant–Fischer theorem, we obtain a similar result towards the normalized Laplacian matrix of undirected networks: for each i ∈ {1, 2,…, n}, any eigenvalue of Hermitian normalized Laplacian matrix λ i ∈ [0, 2]. Moreover, we prove some special conditions if 0, or 2 is an eigenvalue of the Hermitian normalized Laplacian matrix L(X). On top of that, we investigate the symmetry of the eigenvalues of L(X)and the edge-version for the eigenvalue interlacing result. Finally we present two expressions for the coefficients of the characteristic polynomial of the Hermitian normalized Laplacian matrix. As an outlook, we sketch some novel and intriguing problems to which our apparatus could generally be applied.

AlkuperäiskieliEnglanti
Sivut175-184
Sivumäärä10
JulkaisuInformation Sciences
Vuosikerta495
DOI - pysyväislinkit
TilaJulkaistu - 1 elok. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence

Sormenjälki

Sukella tutkimusaiheisiin 'Hermitian normalized Laplacian matrix for directed networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä