High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures

Jiali Shen, Wiebke Scholz, Xu Cheng He, Putian Zhou, Guillaume Marie, Mingyi Wang, Ruby Marten, Mihnea Surdu, Birte Rörup, Rima Baalbaki, Antonio Amorim, Farnoush Ataei, David M. Bell, Barbara Bertozzi, Zoé Brasseur, Lucía Caudillo, Dexian Chen, Biwu Chu, Lubna Dada, Jonathan DuplissyHenning Finkenzeller, Manuel Granzin, Roberto Guida, Martin Heinritzi, Victoria Hofbauer, Siddharth Iyer, Deniz Kemppainen, Weimeng Kong, Jordan E. Krechmer, Andreas Kürten, Houssni Lamkaddam, Chuan Ping Lee, Brandon Lopez, Naser G.A. Mahfouz, Hanna E. Manninen, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Tatjana Müller, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Pontus Roldin, Siegfried Schobesberger, Mario Simon, Dominik Stolzenburg, Yee Jun Tham, António Tomé, Nsikanabasi Silas Umo, Dongyu Wang, Yonghong Wang, Stefan K. Weber, André Welti, Robin Wollesen De Jonge, Yusheng Wu, Marcel Zauner-Wieczorek, Felix Zust, Urs Baltensperger, Joachim Curtius, Richard C. Flagan, Armin Hansel, Ottmar Möhler, Tuukka Petäjä, Rainer Volkamer, Markku Kulmala, Katrianne Lehtipalo, Matti Rissanen, Jasper Kirkby, Imad El-Haddad, Federico Bianchi, Mikko Sipilä, Neil M. Donahue, Douglas R. Worsnop

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

27 Sitaatiot (Scopus)
12 Lataukset (Pure)

Abstrakti

Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.

AlkuperäiskieliEnglanti
Sivut13931-13944
Sivumäärä14
JulkaisuEnvironmental Science and Technology
Vuosikerta56
Numero19
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Yleinen kemia
  • Environmental Chemistry

Sormenjälki

Sukella tutkimusaiheisiin 'High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä