TY - JOUR
T1 - How to explain AI systems to end users
T2 - a systematic literature review and research agenda
AU - Laato, Samuli
AU - Tiainen, Miika
AU - Najmul Islam, A. K.M.
AU - Mäntymäki, Matti
N1 - Funding Information:
The initial literature search upon which this article develops was done for the following Master's thesis published at the University of Turku: Tiainen, M., (2021), To whom to explain and what?: Systematic literature review on empirical studies on Explainable Artificial Intelligence (XAI), available at: https://www.utupub.fi/handle/10024/151554, accessed April 2, 2022.
Publisher Copyright:
© 2021, Samuli Laato, Miika Tiainen, A.K.M. Najmul Islam and Matti Mäntymäki.
PY - 2022/5/2
Y1 - 2022/5/2
N2 - Purpose: Inscrutable machine learning (ML) models are part of increasingly many information systems. Understanding how these models behave, and what their output is based on, is a challenge for developers let alone non-technical end users. Design/methodology/approach: The authors investigate how AI systems and their decisions ought to be explained for end users through a systematic literature review. Findings: The authors’ synthesis of the literature suggests that AI system communication for end users has five high-level goals: (1) understandability, (2) trustworthiness, (3) transparency, (4) controllability and (5) fairness. The authors identified several design recommendations, such as offering personalized and on-demand explanations and focusing on the explainability of key functionalities instead of aiming to explain the whole system. There exists multiple trade-offs in AI system explanations, and there is no single best solution that fits all cases. Research limitations/implications: Based on the synthesis, the authors provide a design framework for explaining AI systems to end users. The study contributes to the work on AI governance by suggesting guidelines on how to make AI systems more understandable, fair, trustworthy, controllable and transparent. Originality/value: This literature review brings together the literature on AI system communication and explainable AI (XAI) for end users. Building on previous academic literature on the topic, it provides synthesized insights, design recommendations and future research agenda.
AB - Purpose: Inscrutable machine learning (ML) models are part of increasingly many information systems. Understanding how these models behave, and what their output is based on, is a challenge for developers let alone non-technical end users. Design/methodology/approach: The authors investigate how AI systems and their decisions ought to be explained for end users through a systematic literature review. Findings: The authors’ synthesis of the literature suggests that AI system communication for end users has five high-level goals: (1) understandability, (2) trustworthiness, (3) transparency, (4) controllability and (5) fairness. The authors identified several design recommendations, such as offering personalized and on-demand explanations and focusing on the explainability of key functionalities instead of aiming to explain the whole system. There exists multiple trade-offs in AI system explanations, and there is no single best solution that fits all cases. Research limitations/implications: Based on the synthesis, the authors provide a design framework for explaining AI systems to end users. The study contributes to the work on AI governance by suggesting guidelines on how to make AI systems more understandable, fair, trustworthy, controllable and transparent. Originality/value: This literature review brings together the literature on AI system communication and explainable AI (XAI) for end users. Building on previous academic literature on the topic, it provides synthesized insights, design recommendations and future research agenda.
KW - End users
KW - Explainable AI
KW - Explanatory AI
KW - Human–computer interaction
KW - Literature review
KW - Machine learning
KW - Systematic literature review
KW - XAI
U2 - 10.1108/INTR-08-2021-0600
DO - 10.1108/INTR-08-2021-0600
M3 - Review Article
AN - SCOPUS:85129661574
SN - 1066-2243
VL - 32
SP - 1
EP - 31
JO - INTERNET RESEARCH
JF - INTERNET RESEARCH
IS - 7
ER -