HybridDeepRx: Deep Learning Receiver for High-EVM Signals

Jaakko Pihlajasalo, Dani Korpi, Mikko Honkala, Janne M.J. Huttunen, Taneli Riihonen, Jukka Talvitie, Alberto Brihuega, Mikko A. Uusitalo, Mikko Valkama

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

9 Sitaatiot (Scopus)
27 Lataukset (Pure)

Abstrakti

In this paper, we propose a machine learning (ML) based physical layer receiver solution for demodulating OFDM signals that are subject to a high level of nonlinear distortion. Specifically, a novel deep learning based convolutional neural network receiver is devised, containing layers in both time- and frequency domains, allowing to demodulate and decode the transmitted bits reliably despite the high error vector magnitude (EVM) in the transmit signal. Extensive set of numerical results is provided, in the context of 5G NR uplink incorporating also measured terminal power amplifier characteristics. The obtained results show that the proposed receiver system is able to clearly outperform classical linear receivers as well as existing ML receiver approaches, especially when the EVM is high in comparison with modulation order. The proposed ML receiver can thus facilitate pushing the terminal power amplifier (PA) systems deeper into saturation, and thereon improve the terminal power-efficiency, radiated power and network coverage.

AlkuperäiskieliEnglanti
Otsikko2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2021
KustantajaIEEE
Sivut622-627
Sivumäärä6
ISBN (elektroninen)9781728175867
DOI - pysyväislinkit
TilaJulkaistu - 13 syysk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications - Helsinki, Suomi
Kesto: 13 syysk. 202116 syysk. 2021

Julkaisusarja

NimiIEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
Vuosikerta2021-September
ISSN (elektroninen)2166-9589

Conference

ConferenceIEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso13/09/2116/09/21

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'HybridDeepRx: Deep Learning Receiver for High-EVM Signals'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä