TY - JOUR
T1 - Hydrothermal carbonisation of mechanically dewatered digested sewage sludge—Energy and nutrient recovery in centralised biogas plant
AU - Hämäläinen, Anna
AU - Kokko, Marika
AU - Kinnunen, Viljami
AU - Hilli, Tuomo
AU - Rintala, Jukka
N1 - Funding Information:
The financial support by Maj and Tor Nessling Foundation (Anna Hämäläinen), Gasum and Fifth Innovation are gratefully acknowledged. The authors acknowledge Kirsi Järvi, Antti Nuottajärvi, Essi Sariola-Leikas and Harri Ali-Löytty for their support in the laboratory.
Publisher Copyright:
© 2021 The Authors
PY - 2021/8/1
Y1 - 2021/8/1
N2 - This study aimed to assess the role of hydrothermal carbonisation (HTC) in digestate processing in centralised biogas plants receiving dewatered sludge from regional wastewater treatment plants and producing biomethane and fertilisers. Chemically conditioned and mechanically dewatered sludge was used as such (total solids (TS) 25%) or as diluted (15% TS) with reject water in 30 min or 120 min HTC treatments at 210 °C, 230 °C or 250 °C, and the produced slurry was filtered to produce hydrochars and filtrates. The different hydrochars contributed to 20–55% of the original mass, 72–88% of the TS, 74–87% of the energy content, 71–92% of the carbon, above 86% of phosphorous and 38–64% of the nitrogen present in the original digestates. The hydrochars’ energy content (higher heating values were 11.3–12.2 MJ/kg-TS) were similar to that of the digestates, while the ash contents increased (from 43% up to 57%). HTC treatments produced filtrates in volumes of 42–76% of the dewatered digestate, having a soluble chemical oxygen demand (SCOD) of 28–44 g/L, of which volatile fatty acids (VFAs) contributed 10–34%, and methane potentials of 182–206 mL-CH4/g-SCOD without any major indication of inhibition. All 32 pharmaceuticals detected in the digestates were below the detection limit in hydrochars and filtrates, save for ibuprofen and benzotriazole in filtrate, while heavy metals were concentrated in the hydrochars but below the national limits for fertiliser use, save for mercury. The integration of HTC to a centralised biogas plant was extrapolated to enhance the annual biogas production by 5% and ammonium recovery by 25%, and the hydrochar was estimated to produce 83 GJ upon combustion or to direct 350 t phosphorous to agriculture annually.
AB - This study aimed to assess the role of hydrothermal carbonisation (HTC) in digestate processing in centralised biogas plants receiving dewatered sludge from regional wastewater treatment plants and producing biomethane and fertilisers. Chemically conditioned and mechanically dewatered sludge was used as such (total solids (TS) 25%) or as diluted (15% TS) with reject water in 30 min or 120 min HTC treatments at 210 °C, 230 °C or 250 °C, and the produced slurry was filtered to produce hydrochars and filtrates. The different hydrochars contributed to 20–55% of the original mass, 72–88% of the TS, 74–87% of the energy content, 71–92% of the carbon, above 86% of phosphorous and 38–64% of the nitrogen present in the original digestates. The hydrochars’ energy content (higher heating values were 11.3–12.2 MJ/kg-TS) were similar to that of the digestates, while the ash contents increased (from 43% up to 57%). HTC treatments produced filtrates in volumes of 42–76% of the dewatered digestate, having a soluble chemical oxygen demand (SCOD) of 28–44 g/L, of which volatile fatty acids (VFAs) contributed 10–34%, and methane potentials of 182–206 mL-CH4/g-SCOD without any major indication of inhibition. All 32 pharmaceuticals detected in the digestates were below the detection limit in hydrochars and filtrates, save for ibuprofen and benzotriazole in filtrate, while heavy metals were concentrated in the hydrochars but below the national limits for fertiliser use, save for mercury. The integration of HTC to a centralised biogas plant was extrapolated to enhance the annual biogas production by 5% and ammonium recovery by 25%, and the hydrochar was estimated to produce 83 GJ upon combustion or to direct 350 t phosphorous to agriculture annually.
KW - Energy recovery
KW - Hydrochar
KW - Hydrothermal carbonisation
KW - Nutrient recovery
KW - Phosphorous
KW - Sewage sludge digestate
U2 - 10.1016/j.watres.2021.117284
DO - 10.1016/j.watres.2021.117284
M3 - Article
AN - SCOPUS:85107614709
SN - 0043-1354
VL - 201
JO - Water Research
JF - Water Research
M1 - 117284
ER -