Hyperspectral complex domain denoising

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

We consider hyperspectral complex domain imaging from hyperspectral complex-valued noisy observations. The proposed algorithm is based on singular value decomposition (SVD) of observations and complex domain block-matching 3D (CDBM3D) filtering in optimized SVD eigenspace. Simulation experiments demonstrate high efficiency of the proposed complex domain joint filtering of hyperspectral data in comparison with CDBM3D filtering of separate 2D slices of hyperspectral cubes as well as with respect to joint real domain independent phase/amplitude filtering this kind of data.
AlkuperäiskieliEnglanti
Otsikko2019 27th European Signal Processing Conference (EUSIPCO)
KustantajaIEEE
Sivumäärä5
ISBN (elektroninen)978-9-0827-9703-9
ISBN (painettu)978-1-5386-7300-3
DOI - pysyväislinkit
TilaJulkaistu - syysk. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEUROPEAN SIGNAL PROCESSING CONFERENCE -
Kesto: 1 tammik. 1900 → …

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491
ISSN (elektroninen)2076-1465

Conference

ConferenceEUROPEAN SIGNAL PROCESSING CONFERENCE
Ajanjakso1/01/00 → …

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Hyperspectral complex domain denoising'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä