Identification of motor symptoms related to Parkinson disease using motion-tracking sensors at home (KÄVELI): Protocol for an observational case-control study

Milla Jauhiainen, Juha Puustinen, Saeed Mehrang, Jari Ruokolainen, Anu Holm, Antti Vehkaoja, Hannu Nieminen

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

4 Sitaatiot (Scopus)
13 Lataukset (Pure)


Background: Clinical characterization of motion in patients with Parkinson disease (PD) is challenging: Symptom progression, suitability of medication, and level of independence in the home environment can vary across time and patients. Appointments at the neurological outpatient clinic provide a limited understanding of the overall situation. In order to follow up these variations, longer-term measurements performed outside of the clinic setting could help optimize and personalize therapies. Several wearable sensors have been used to estimate the severity of symptoms in PD; however, longitudinal recordings, even for a short duration of a few days, are rare. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments. Objective: The primary objective of this study is to collect a dataset for developing methods to detect PD-related symptoms that are visible in walking patterns at home. The movement data are collected continuously and remotely at home during the normal lives of patients with PD as well as controls. The secondary objective is to use the dataset to study whether the registered medication intakes can be identified from the collected movement data by looking for and analyzing short-term changes in walking patterns. Methods: This paper described the protocol for an observational case-control study that measures activity using three different devices: (1) a smartphone with a built-in accelerometer, gyroscope, and phone orientation sensor, (2) a Movesense smart sensor to measure movement data from the wrist, and (3) a Forciot smart insole to measure the forces applied on the feet. The measurements are first collected during the appointment at the clinic conducted by a trained clinical physiotherapist. Subsequently, the subjects wear the smartphone at home for 3 consecutive days. Wrist and insole sensors are not used in the home recordings. Results: Data collection began in March 2018. Subject recruitment and data collection will continue in spring 2019. The intended sample size was 150 subjects. In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD. Conclusions: This study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies. The study also aims to develop data analysis methods to monitor PD symptoms and the effects of medication intake during normal life andoutside of the clinic setting. Further applications of these methods may include using them as tools for health care professionals to monitor PD remotely and applying them to other movement disorders.

JulkaisuJournal of Medical Internet Research
DOI - pysyväislinkit
TilaJulkaistu - 1 maalisk. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Health Informatics


Sukella tutkimusaiheisiin 'Identification of motor symptoms related to Parkinson disease using motion-tracking sensors at home (KÄVELI): Protocol for an observational case-control study'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä