Image Restoration via Collaborative Filtering and Deep Learning

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

17 Lataukset (Pure)

Abstrakti

In this paper, we investigate the challenge of image restoration from severely incomplete data, encompassing compressive sensing image restoration and image inpainting. We propose a versatile implementation framework of plug-and-play ADMM image reconstruction, leveraging readily several available denoisers including model-based nonlocal denoisers and deep learning-based denoisers. We conduct a comprehensive comparative analysis against state-of-the-art methods, showcasing superior performance in both qualitative and quantitative aspects, including image quality and implementation complexity.

AlkuperäiskieliEnglanti
OtsikkoIS&T International Symposium on Electronic Imaging 2024
AlaotsikkoImage Processing: Algorithms and Systems XXII
KustantajaSociety for Imaging Science and Technology
Sivut245-1 - 245-4
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIS and T International Symposium on Electronic Imaging - San Francisco, Yhdysvallat
Kesto: 21 tammik. 202425 tammik. 2024

Julkaisusarja

NimiIS and T International Symposium on Electronic Imaging Science and Technology
Numero10
Vuosikerta36
ISSN (painettu)2470-1173

Conference

ConferenceIS and T International Symposium on Electronic Imaging
Maa/AlueYhdysvallat
KaupunkiSan Francisco
Ajanjakso21/01/2425/01/24

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Human-Computer Interaction
  • Software
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics

Sormenjälki

Sukella tutkimusaiheisiin 'Image Restoration via Collaborative Filtering and Deep Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä