Improving Automated Operations of Heavy-Duty Manipulators with Modular Model-Based Control Design

Tutkimustuotos: VäitöskirjaCollection of Articles


The rapid development of robotization and automation in mobile working machines aims to increase productivity and safety in many industrial sectors. In heavy-duty applications, hydraulically actuated manipulators are the common solution due to their large power-to-weight ratio. As hydraulic systems can exhibit nonlinear dynamic behavior, automated operations with closed-loop control become challenging. In industrial applications, the dexterity of operations for manipulators is ensured by providing interfaces to equip product variants with different tool attachments. By considering these domain-specific tool attachments for heavy-duty hydraulic manipulators (HHMs), the autonomous robotic operating development for all product variants might be a time-consuming process.

This thesis aims to develop a modular nonlinear model-based (NMB) control method for HHMs to enable systematic NMB model reuse and control system modularity across different HHM product variants with actuators and tool attachments. Equally importantly, the properties of NMB control are used to improve the high-performance control for multi degrees-of-freedom robotic HHMs, as rigorously stability-guaranteed control systems have been shown to provide superior performance. To achieve these objectives, four research problems (RPs) on HHM controls are addressed. The RPs are focused on damping control methods in underactuated tool attachments, compensating for static actuator nonlinearities, and, equally significantly, improving overall control performance. The fourth RP is introduced for hydraulic series elastic actuators (HSEAs) in HHM applications, which can be regarded as supplementing NMB control with the aim of improving force controllability.

Six publications are presented to investigate the RPs in this thesis. The control development focus was on modular NMB control design for HHMs equipped with different actuators and tool attachments consisting of passive and actuated joints. The designed control methods were demonstrated on a full-size HHM and a novel HSEA concept in a heavy-duty experimental setup. The results verified that modular control design for HHM systems can be used to decrease the modifications required to use the manipulator with different tool attachments and floating-base environments.
ISBN (elektroninen)978-952-03-2830-6
TilaJulkaistu - 2023
OKM-julkaisutyyppiG5 Artikkeliväitöskirja


NimiTampere University Dissertations - Tampereen yliopiston väitöskirjat
ISSN (painettu)2489-9860
ISSN (elektroninen)2490-0028


Sukella tutkimusaiheisiin 'Improving Automated Operations of Heavy-Duty Manipulators with Modular Model-Based Control Design'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä