Indoor Localisation using Aroma Fingerprints: Comparing Nearest Neighbour Classification Accuracy using Different Distance Measures

Georgy Minaev, Philipp Müller, Ari Visa, Robert Piché

    Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

    2 Sitaatiot (Scopus)
    35 Lataukset (Pure)

    Abstrakti

    Measurements from an ion mobility spectrometry electronic nose (eNose) can be used for distinguishing different rooms in indoor localisation. An earlier study showed that the Nearest Neighbour classifier with Euclidean distance for features provides reasonable accuracy under certain conditions. In this paper 66 alternative distance measures are compared to the Euclidean distance and principal component analysis (PCA) is applied to the data. PCA shows that the measurements on the various channels of the eNose are correlated and that using principal components 1, 2 and 4 increases the accuracy considerably. Furthermore, the experiments revealed three Pareto optimal distance measures that reduce the misclassification rate between 9-10% while using only 82-88% of the search time compared with Euclidean distance.
    AlkuperäiskieliEnglanti
    Otsikko2018 7th International Conference on Systems and Control (ICSC)
    Alaotsikko24-26 Oct. 2018, Valencia, Spain
    JulkaisupaikkaValencia, Spain
    KustantajaIEEE
    Sivumäärä6
    ISBN (elektroninen)978-1-5386-8537-2
    ISBN (painettu)978-1-5386-8538-9
    DOI - pysyväislinkit
    TilaJulkaistu - lokak. 2018
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaInternational Conference on Systems and Control -
    Kesto: 1 tammik. 2000 → …

    Julkaisusarja

    Nimi
    ISSN (elektroninen)2379-0067

    Conference

    ConferenceInternational Conference on Systems and Control
    Ajanjakso1/01/00 → …

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Indoor Localisation using Aroma Fingerprints: Comparing Nearest Neighbour Classification Accuracy using Different Distance Measures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä