Inference and validation of predictive gene networks from biomedical literature and gene expression data

Catharina Olsen, Kathleen Fleming, Niall Prendergast, Renee Rubio, Frank Emmert-Streib, Gianluca Bontempi, Benjamin Haibe-Kains, John Quackenbush

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    33 Sitaatiot (Scopus)

    Abstrakti

    Although many methods have been developed for inference of biological networks, the validation of the resulting models has largely remained an unsolved problem. Here we present a framework for quantitative assessment of inferred gene interaction networks using knock-down data from cell line experiments. Using this framework we are able to show that network inference based on integration of prior knowledge derived from the biomedical literature with genomic data significantly improves the quality of inferred networks relative to other approaches. Our results also suggest that cell line experiments can be used to quantitatively assess the quality of networks inferred from tumor samples.

    AlkuperäiskieliEnglanti
    Sivut329-336
    Sivumäärä8
    JulkaisuGenomics
    Vuosikerta103
    Numero5-6
    DOI - pysyväislinkit
    TilaJulkaistu - 2014
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    !!ASJC Scopus subject areas

    • Genetics
    • Yleinen lääketiede

    Sormenjälki

    Sukella tutkimusaiheisiin 'Inference and validation of predictive gene networks from biomedical literature and gene expression data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä