Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

15 Lataukset (Pure)

Abstrakti

In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability, which may pose challenges in ensuring stability and safety. To address these issues, we propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy, all while actively engaging in the learning phase through interactions with the environment. This approach circumvents the control performance and complexities associated with computations while addressing nonrepetitive reaching tasks in the presence of obstacles. First, a model-free DRL agent is employed to plan velocity-bounded motion for a manipulator with 'n' degrees of freedom (DoF), ensuring collision avoidance for the end-effector through joint-level reasoning. The generated reference motion is then input into a robust subsystem-based adaptive controller, which produces the necessary torques, while the cuckoo search optimization (CSO) algorithm enhances control gains to minimize the stabilization and tracking error in the steady state. This approach guarantees robustness and uniform exponential convergence in an unfamiliar environment. Theoretical assertions are validated through the presentation of simulation outcomes.
AlkuperäiskieliEnglanti
Otsikko2024 IEEE International Conference on Mechatronics and Automation (ICMA)
KustantajaIEEE
Sivut329-336
Sivumäärä8
ISBN (elektroninen)979-8-3503-8807-7
ISBN (painettu)979-8-3503-8808-4
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Mechatronics and Automation - Tianjin, Kiina
Kesto: 4 elok. 20247 elok. 2024

Julkaisusarja

NimiInternational Conference on Industrial Mechatronics and Automation
ISSN (painettu)2152-7431
ISSN (elektroninen)2152-744X

Conference

ConferenceIEEE International Conference on Mechatronics and Automation
Maa/AlueKiina
KaupunkiTianjin
Ajanjakso4/08/247/08/24

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä