Introduction to Survival Analysis in Practice

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

53 Lataukset (Pure)


The modeling of time to event data is an important topic with many applications in diverse areas. The collective of methods to analyze such data are called survival analysis, event history analysis or duration analysis. Survival analysis is widely applicable because the definition of an ’event’ can be manifold and examples include death, graduation, purchase or bankruptcy. Hence, application areas range from medicine and sociology to marketing and economics. In this paper, we review the theoretical basics of survival analysis including estimators for survival and hazard functions. We discuss the Cox Proportional Hazard Model in detail and also approaches for testing the proportional hazard (PH) assumption. Furthermore, we discuss stratified Cox models for cases when the PH assumption does not hold. Our discussion is complemented with a worked example using the statistical programming language R to enable the practical application of the methodology.
JulkaisuMachine Learning and Knowledge Extraction
DOI - pysyväislinkit
TilaJulkaistu - 8 syysk. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


  • Ei tasoa


Sukella tutkimusaiheisiin 'Introduction to Survival Analysis in Practice'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä