TY - JOUR
T1 - Investigating the Impact of Connected and Automated Vehicles on Signalized and Unsignalized Intersections Safety in Mixed Traffic
T2 - Future Transportation
AU - Karbasi, Amirhosein
AU - O’Hern, Steve
PY - 2022
Y1 - 2022
N2 - Road traffic crashes are a major safety problem, with one of the leading factors in crashes being human error. Automated and connected vehicles (CAVs) that are equipped with Advanced Driver Assistance Systems (ADAS) are expected to reduce human error. In this paper, the Simulation of Urban MObility (SUMO) traffic simulator is used to investigate how CAVs impact road safety. In order to define the longitudinal behavior of Human Drive Vehicles (HDVs) and CAVs, car-following models, including the Krauss, the Intelligent Driver Model (IDM), and Cooperative Adaptive Cruise Control (CACC) car-following models were used to simulate CAVs. Surrogate safety measures were utilized to analyze CAVs’ safety impact using time-to-collision. Two case studies were evaluated: a signalized grid network that included nine intersections, and a second network consisting of an unsignalized intersection. The results demonstrate that CAVs could potentially reduce the number of conflicts based on each of the car following model simulations and the two case studies. A secondary finding of the research identified additional safety benefits of vehicles equipped with collision avoidance control, through the reduction in rear-end conflicts observed for the CACC car-following model.
AB - Road traffic crashes are a major safety problem, with one of the leading factors in crashes being human error. Automated and connected vehicles (CAVs) that are equipped with Advanced Driver Assistance Systems (ADAS) are expected to reduce human error. In this paper, the Simulation of Urban MObility (SUMO) traffic simulator is used to investigate how CAVs impact road safety. In order to define the longitudinal behavior of Human Drive Vehicles (HDVs) and CAVs, car-following models, including the Krauss, the Intelligent Driver Model (IDM), and Cooperative Adaptive Cruise Control (CACC) car-following models were used to simulate CAVs. Surrogate safety measures were utilized to analyze CAVs’ safety impact using time-to-collision. Two case studies were evaluated: a signalized grid network that included nine intersections, and a second network consisting of an unsignalized intersection. The results demonstrate that CAVs could potentially reduce the number of conflicts based on each of the car following model simulations and the two case studies. A secondary finding of the research identified additional safety benefits of vehicles equipped with collision avoidance control, through the reduction in rear-end conflicts observed for the CACC car-following model.
KW - connected and automated vehicles
KW - road safety
KW - intersections
KW - time to collision
KW - mixed traffic
KW - SUMO
U2 - 10.3390/futuretransp2010002
DO - 10.3390/futuretransp2010002
M3 - Article
SN - 2673-7590
VL - 2
SP - 24
EP - 40
JO - Future Transportation
JF - Future Transportation
IS - 1
ER -