Abstrakti
This short paper explores the usability of Long Range Wide Area Network (LoRaWAN) technology for localization within the context of modern Industry 5.0 wireless networks. Traditional localization methods have often fallen short in providing meaningful accuracy in this domain. Our research addresses this gap by investigating the potential of LoRaWAN for localization, synthesizing key findings and advancements. Two primary contributions are presented: the analysis of two underground LoRaWAN datasets, valuable resources for researchers and practitioners, and the proposal of two innovative 𝑘-nearest neighbors (𝑘-NN) algorithms designed to enhance position estimation accuracy through optimized nearest neighbor selection. By integrating preprocessing strategies with these algorithms, an improvement in accuracy of up to 17% is achieved.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of Work-in-Progress in Hardware and Software for Location Computation (WIPHAL 2024) |
Toimittajat | Aleksandr Ometov, Jari Nurmi, Elena Simona Lohan, Joaquín Torres-Sospedra, Heidi Kuusniemi |
Kustantaja | CEUR-WS |
Sivumäärä | 6 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Work-in-Progress in Hardware and Software for Location Computation - Antwerp, Belgia Kesto: 25 kesäk. 2024 → 27 kesäk. 2024 https://events.tuni.fi/icl-gnss2024/ |
Julkaisusarja
Nimi | CEUR Workshop Proceedings |
---|---|
Kustantaja | CEUR-WS |
Vuosikerta | 3719 |
ISSN (elektroninen) | 1613-0073 |
Conference
Conference | Work-in-Progress in Hardware and Software for Location Computation |
---|---|
Lyhennettä | WIPHAL 2024 |
Maa/Alue | Belgia |
Kaupunki | Antwerp |
Ajanjakso | 25/06/24 → 27/06/24 |
www-osoite |
Julkaisufoorumi-taso
- Jufo-taso 1