Koblitz curves and integer equivalents of frobenius expansions

Billy Bob Brumley, Kimmo Järvinen

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

9 Sitaatiot (Scopus)

Abstrakti

Scalar multiplication on Koblitz curves can be very efficient due to the elimination of point doublings. Modular reduction of scalars is commonly performed to reduce the length of expansions, and τ-adic Non-Adjacent Form (NAF) can be used to reduce the density. However, such modular reduction can be costly. An alternative to this approach is to use a random τ-adic NAF, but some cryptosystems (e.g. ECDSA) require both the integer and the scalar multiple. This paper presents an efficient method for computing integer equivalents of random τ-adic expansions. The hardware implications are explored, and an efficient hardware implementation is presented. The results suggest significant computational efficiency gains over previously documented methods.

AlkuperäiskieliEnglanti
OtsikkoSelected Areas in Cryptography - 14th International Workshop, SAC 2007, Revised Selected Papers
Sivut126-137
Sivumäärä12
TilaJulkaistu - 1 jouluk. 2007
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma14th International Workshop on Selected Areas in Cryptography, SAC 2007 - Ottawa, Kanada
Kesto: 16 elok. 200717 elok. 2007

Julkaisusarja

NimiLecture Notes in Computer Science
Vuosikerta4876
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

Conference14th International Workshop on Selected Areas in Cryptography, SAC 2007
Maa/AlueKanada
KaupunkiOttawa
Ajanjakso16/08/0717/08/07

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Sormenjälki

Sukella tutkimusaiheisiin 'Koblitz curves and integer equivalents of frobenius expansions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä