Kriging prediction of stand-level forest information using mobile laser scanning data adjusted for nondetection

Svetlana Saarela, Johannes Breidenbach, Pasi Raumonen, Anton Grafström, Göran Ståhl, Mark J. Ducey, Rasmus Astrup

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    7 Sitaatiot (Scopus)

    Abstrakti

    This study presents an approach for predicting stand-level forest attributes utilizing mobile laser scanning data collected as a nonprobability sample. Firstly, recordings of stem density were made at point locations every 10th metre along a subjectively chosen mobile laser scanning track in a forest stand. Secondly, kriging was applied to predict stem density values for the centre point of all grid cells in a 5 m x 5 m lattice across the stand. Thirdly, due to nondetectability issues, a correction term was computed based on distance sampling theory. Lastly, the mean stem density at stand level was predicted as the mean of the point-level predictions multiplied with the correction factor, and the corresponding variance was estimated. Many factors contribute to the uncertainty of the stand-level prediction; in the variance estimator, we accounted for the uncertainties due to kriging prediction and due to estimating a detectability model from the laser scanning data. The results from our new approach were found to correspond fairly well to estimates obtained using field measurements from an independent set of 54 circular sample plots. The predicted number of stems in the stand based on the proposed methodology was 1366 with a 12.9% relative standard error. The corresponding estimate based on the field plots was 1677 with a 7.5% relative standard error.

    AlkuperäiskieliEnglanti
    Sivut1257-1265
    Sivumäärä9
    JulkaisuCANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE
    Vuosikerta47
    Numero9
    DOI - pysyväislinkit
    TilaJulkaistu - 2017
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 3

    Sormenjälki

    Sukella tutkimusaiheisiin 'Kriging prediction of stand-level forest information using mobile laser scanning data adjusted for nondetection'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä