Learned vs. hand-designed features for ECG beat classification: A comprehensive study

T. Ince, M. Zabihi, S. Kiranyaz, M. Gabbouj

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    3 Sitaatiot (Scopus)

    Abstrakti

    In this study, in order to find out the best ECG classification performance we realized comparative evaluations among the state-of-the-art classifiers such as Convolutional Neural Networks (CNNs), multi-layer perceptrons (MLPs) and Support Vector Machines (SVMs). Furthermore, we compared the performance of the learned features from the last convolutional layer of trained 1-D CNN classifier against the handcrafted features that are extracted by Principal Component Analysis, Hermite Transform and Dyadic Wavelet Transform. Experimental results over the MIT-BIH arrhythmia benchmark database demonstrate that the single channel (raw ECG data based) shallow 1D CNN classifier over the learned features in general achieves the highest classification accuracy and computational efficiency. Finally, it is observed that the use of the learned features on either SVM or MLP classifiers does not yield any performance improvement.

    AlkuperäiskieliEnglanti
    OtsikkoEMBEC and NBC 2017 - Joint Conference of the European Medical and Biological Engineering Conference EMBEC 2017 and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2017
    KustantajaSpringer Verlag
    Sivut551-554
    Sivumäärä4
    ISBN (painettu)9789811051210
    DOI - pysyväislinkit
    TilaJulkaistu - 2018
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaJoint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC) -
    Kesto: 1 tammik. 1900 → …

    Julkaisusarja

    NimiIFMBE Proceedings
    Vuosikerta65
    ISSN (painettu)1680-0737

    Conference

    ConferenceJoint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC)
    Ajanjakso1/01/00 → …

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Biomedical Engineering
    • Bioengineering

    Sormenjälki

    Sukella tutkimusaiheisiin 'Learned vs. hand-designed features for ECG beat classification: A comprehensive study'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä