Learning-based Noise Component Map Estimation for Image Denoising

Sheyda Ghanbaralizadeh Bahnemiri, Mykola Ponomarenko, Karen Egiazarian

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

19 Sitaatiot (Scopus)
26 Lataukset (Pure)

Abstrakti

A problem of image denoising, when images are corrupted by a non-stationary noise, is considered in this paper. Since, in practice, no a priori information on noise is available, noise statistics should be pre-estimated prior to image denoising. In this paper, deep convolutional neural network (CNN) based method for estimation of a map of local, patch-wise, standard deviations of noise (so-called sigma-map) is proposed. It achieves the state-of-the-art performance in accuracy of estimation of sigma-map for the case of non-stationary noise, as well as estimation of a noise variance for the case of an additive white Gaussian noise. Extensive experiments on image denoising using estimated sigma-maps demonstrate that our method outperforms recent CNN-based blind image denoising methods by up to 6 dB in PSNR, as well as other state-of-the-art methods based on sigma-map estimation by up to 0.5 dB, providing, at the same time, better usage flexibility. A comparison with the ideal case, when denoising is applied using ground-truth sigma-map, shows that a difference of corresponding PSNR values for the most of noise levels is within 0.1-0.2 dB, and does not exceed 0.6 dB.

AlkuperäiskieliEnglanti
Sivut1407-1411
JulkaisuIEEE Signal Processing Letters
Vuosikerta29
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering
  • Applied Mathematics

Sormenjälki

Sukella tutkimusaiheisiin 'Learning-based Noise Component Map Estimation for Image Denoising'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä