Learning-Based RF Fingerprinting for Device Identification using Amplitude-Phase Spectrograms

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Sitaatiot (Scopus)
55 Lataukset (Pure)

Abstrakti

Radio frequency fingerprinting (RFF), a technique based on specific transmitter hardware impairments, has emerged as an effective solution for wireless device identification. In this paper, we present a flexible deep CNN-LSTM for RF feature extraction capable of handling inputs with varying lengths. We construct a channel-independent spectrogram by exploiting the amplitude and phase information of the received RF signals, ensuring the extractor’s resilience to channel variations. To evaluate the performance of the proposed approach, we utilize the open-source LoRa dataset consisting of 60 commercial off-the-shelf LoRa devices and a USRP N210 software-defined radio platform. The experimental results show that classifiers perform better when trained with RF templates generated from amplitude-phase spectrogram than amplitude-only spectrogram. This is due to the additional information present in the amplitude-phase channel-independent spectrogram.
AlkuperäiskieliEnglanti
Otsikko2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall)
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)979-8-3503-2928-5
ISBN (painettu)979-8-3503-2929-2
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Vehicular Technology Conference
- Hong Kong, Hongkong
Kesto: 10 lokak. 202313 lokak. 2023

Julkaisusarja

NimiIEEE Vehicular Technology Conference
ISSN (painettu)1090-3038
ISSN (elektroninen)2577-2465

Conference

ConferenceIEEE Vehicular Technology Conference
Maa/AlueHongkong
KaupunkiHong Kong
Ajanjakso10/10/2313/10/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Learning-Based RF Fingerprinting for Device Identification using Amplitude-Phase Spectrograms'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä