Learning Distinct Features Helps, Provably

Firas Laakom, Jenni Raitoharju, Alexandros Iosifidis, Moncef Gabbouj

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

We study the diversity of the features learned by a two-layer neural network trained with the least squares loss. We measure the diversity by the average -distance between the hidden-layer features and theoretically investigate how learning non-redundant distinct features affects the performance of the network. To do so, we derive novel generalization bounds depending on feature diversity based on Rademacher complexity for such networks. Our analysis proves that more distinct features at the network’s units within the hidden layer lead to better generalization. We also show how to extend our results to deeper networks and different losses.

AlkuperäiskieliEnglanti
OtsikkoMachine Learning and Knowledge Discovery in Databases
AlaotsikkoResearch Track - European Conference, ECML PKDD 2023, Proceedings
ToimittajatDanai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, Francesco Bonchi
KustantajaSpringer
Sivut206-222
Sivumäärä17
ISBN (elektroninen)978-3-031-43415-0
ISBN (painettu)9783031434143
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Turin, Italia
Kesto: 18 syysk. 202322 syysk. 2023

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta14170 LNAI
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Maa/AlueItalia
KaupunkiTurin
Ajanjakso18/09/2322/09/23

Rahoitus

This work has been supported by the NSF-Business Finland Center for Visual and Decision Informatics (CVDI) project AMALIA. The work of Jenni Raitoharju was funded by the Academy of Finland (project 324475). Alexandros Iosifidis acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957337.

RahoittajatRahoittajan numero
NSF-Business
Horizon 2020 Framework Programme957337
Academy of Finland324475

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Theoretical Computer Science
    • Yleinen tietojenkäsittelytiede

    Sormenjälki

    Sukella tutkimusaiheisiin 'Learning Distinct Features Helps, Provably'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä