Lensless Phase Retrieval With Regularization By Blind Noise Map Estimation and Denoising

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

This paper addresses the challenge of regularization in lensless single-shot phase retrieval (PR) by noise suppression. Due to the unique aspects of the PR algorithm, the noise is spatially correlated with a non-stationary level and distribution, which complicates PR’s reconstruction and convergence. To address this problem, We propose an algorithm for noise suppression, which utilizes the PIXPNet network for the initial estimation of noise parameters and prefiltering noise associated with the heavy tails of the noise distribution. Subsequently, the DRUNet network is applied within frequency sub-bands to suppress the noise meticulously. Our findings reveal that the proposed regularization, operating in a fully blind mode, outperforms our previous PR algorithm by achieving more effective noise suppression, enlarged field of view, and enhanced accuracy in estimating the height map of the object.
AlkuperäiskieliEnglanti
Otsikko2024 IEEE International Conference on Image Processing (ICIP)
KustantajaIEEE
Sivut3986-3992
ISBN (elektroninen)979-8-3503-4939-9
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Image Processing - Abu Dhabi, Yhdistyneet arabiemiirikunnat
Kesto: 27 lokak. 202430 lokak. 2024

Julkaisusarja

NimiProceedings - International Conference on Image Processing
ISSN (elektroninen)2381-8549

Conference

ConferenceIEEE International Conference on Image Processing
Maa/AlueYhdistyneet arabiemiirikunnat
Kaupunki Abu Dhabi
Ajanjakso27/10/2430/10/24

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Lensless Phase Retrieval With Regularization By Blind Noise Map Estimation and Denoising'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä