Light-Weight EPINET Architecture for Fast Light Field Disparity Estimation

Ali Hassan, Marten Sjostrom, Tingting Zhang, Karen Egiazarian

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

5 Sitaatiot (Scopus)
34 Lataukset (Pure)

Abstrakti

Recent deep learning-based light field disparity estimation algorithms require millions of parameters, which demand high computational cost and limit the model deployment. In this paper, an investigation is carried out to analyze the effect of depthwise separable convolution and ghost modules on state-of-the-art EPINET architecture for disparity estimation. Based on this investigation, four convolutional blocks are proposed to make the EPINET architecture a fast and light-weight network for disparity estimation. The experimental results exhibit that the proposed convolutional blocks have significantly reduced the computational cost of EPINET architecture by up to a factor of 3.89, while achieving comparable disparity maps on HCI Benchmark dataset.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE 24th International Workshop on Multimedia Signal Processing, MMSP 2022
KustantajaIEEE
ISBN (elektroninen)9781665471893
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Multimedia Signal Processing - Shanghai, Kiina
Kesto: 26 syysk. 202228 syysk. 2022

Julkaisusarja

NimiIEEE International Workshop on Multimedia Signal Processing, MMSP
ISSN (elektroninen)2473-3628

Conference

ConferenceIEEE International Workshop on Multimedia Signal Processing
Maa/AlueKiina
KaupunkiShanghai
Ajanjakso26/09/2228/09/22

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Media Technology

Sormenjälki

Sukella tutkimusaiheisiin 'Light-Weight EPINET Architecture for Fast Light Field Disparity Estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä