Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor Classification

Darwin Quezada-Gaibor, Joaquín Torres-Sospedra, Jari Nurmi, Yevgeni Koucheryavy, Joaquín Huerta

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

2 Sitaatiot (Scopus)
28 Lataukset (Pure)

Abstrakti

Machine learning models have become an essential tool in current indoor positioning solutions, given their high capa-bilities to extract meaningful information from the environment. Convolutional neural networks (CNNs) are one of the most used neural networks (NNs) due to that they are capable of learning complex patterns from the input data. Another model used in indoor positioning solutions is the Extreme Learning Machine (ELM), which provides an acceptable generalization performance as well as a fast speed of learning. In this paper, we offer a lightweight combination of CNN and ELM, which provides a quick and accurate classification of building and floor, suitable for power and resource-constrained devices. As a result, the proposed model is 58% faster than the benchmark, with a slight improvement in the classification accuracy (by less than 1 %).

AlkuperäiskieliEnglanti
Otsikko2022 International Conference on Localization and GNSS, ICL-GNSS 2022 - Proceedings
ToimittajatJari Nurmi, Elena-Simona Lohan, Joaquin Torres Sospedra, Heidi Kuusniemi, Aleksandr Ometov
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)9781665405751
ISBN (painettu)9781665405768
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Localization and GNSS - Tampere, Suomi
Kesto: 7 kesäk. 20229 kesäk. 2022

Julkaisusarja

NimiInternational Conference on Localization and GNSS
ISSN (painettu)2325-0747
ISSN (elektroninen)2325-0771

Conference

ConferenceInternational Conference on Localization and GNSS
Maa/AlueSuomi
KaupunkiTampere
Ajanjakso7/06/229/06/22

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Networks and Communications
  • Aerospace Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor Classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä