Local network-based measures to assess the inferability of different regulatory networks

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

26 Sitaatiot (Scopus)

Abstrakti

The purpose of this study is to compare the inferability of various synthetic as well as real biological regulatory networks. In order to assess differences we apply local network-based measures. That means, instead of applying global measures, we investigate and assess an inference algorithm locally, on the level of individual edges and subnetworks. We demonstrate the behaviour of our local network-based measures with respect to different regulatory networks by conducting large-scale simulations. As inference algorithm we use exemplarily ARACNE. The results from our exploratory analysis allow us not only to gain new insights into the strength and weakness of an inference algorithm with respect to characteristics of different regulatory networks, but also to obtain information that could be used to design novel problem-specific statistical estimators. [Includes supplementary material]

AlkuperäiskieliEnglanti
ArtikkeliISBEAT000004000004000277000001
Sivut277-288
Sivumäärä12
JulkaisuIET Systems Biology
Vuosikerta4
Numero4
DOI - pysyväislinkit
TilaJulkaistu - heinäk. 2010
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

!!ASJC Scopus subject areas

  • Biotechnology
  • Cell Biology
  • Genetics
  • Molecular Biology
  • Modelling and Simulation
  • Yleinen lääketiede

Sormenjälki

Sukella tutkimusaiheisiin 'Local network-based measures to assess the inferability of different regulatory networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä