Machine learning and applications in ultrafast photonics

Goëry Genty, Lauri Salmela, John M. Dudley, Daniel Brunner, Alexey Kokhanovskiy, Sergei Kobtsev, Sergei K. Turitsyn

Tutkimustuotos: Katsausartikkelivertaisarvioitu

297 Sitaatiot (Scopus)
354 Lataukset (Pure)

Abstrakti

Recent years have seen the rapid growth and development of the field of smart photonics, where machine-learning algorithms are being matched to optical systems to add new functionalities and to enhance performance. An area where machine learning shows particular potential to accelerate technology is the field of ultrafast photonics — the generation and characterization of light pulses, the study of light–matter interactions on short timescales, and high-speed optical measurements. Our aim here is to highlight a number of specific areas where the promise of machine learning in ultrafast photonics has already been realized, including the design and operation of pulsed lasers, and the characterization and control of ultrafast propagation dynamics. We also consider challenges and future areas of research.

AlkuperäiskieliEnglanti
Sivut91–101
Sivumäärä11
JulkaisuNature Photonics
Vuosikerta15
Numero2
Varhainen verkossa julkaisun päivämäärä2020
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Sormenjälki

Sukella tutkimusaiheisiin 'Machine learning and applications in ultrafast photonics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä