Machine Learning Based Efficient Qt-Mtt Partitioning for VVC Inter Coding

A. Tissier, W. Hamidouche, J. Vanne, D. Menard

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

9 Sitaatiot (Scopus)
52 Lataukset (Pure)

Abstrakti

The Joint Video Experts Team (JVET) have standardized the Versatile Video Coding (VVC) in 2020 targeting efficient coding of the emerging video services and formats such as 8K and immersive video streaming applications. VVC standard enhances the coding efficiency by 40% at the cost of an encoder computational complexity increase estimated to 859%(x8) compared to the previous standard High Efficiency Video Coding (HEVC). This work aims at reducing the complexity of the VVC encoder under the Random Access (RA) configuration. The proposed method takes advantage of the inter prediction in order to predict the split probabilities through a convolutional neural network. Our solution reaches 31.8% of complexity reduction for a negligible bitrate increase of 1.11% outperforming state-of-the-art methods.
AlkuperäiskieliEnglanti
Otsikko2022 IEEE International Conference on Image Processing (ICIP)
KustantajaIEEE
Sivut1401-1405
Sivumäärä5
ISBN (elektroninen)978-1-6654-9620-9
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Image Processing - Bordeaux, Ranska
Kesto: 16 lokak. 202219 lokak. 2022

Julkaisusarja

NimiProceedings : International Conference on Image Processing
ISSN (elektroninen)2381-8549

Conference

ConferenceIEEE International Conference on Image Processing
Maa/AlueRanska
KaupunkiBordeaux
Ajanjakso16/10/2219/10/22

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Machine Learning Based Efficient Qt-Mtt Partitioning for VVC Inter Coding'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä