Machine-learning-enabled optimization of atomic structures using atoms with fractional existence

Casper Larsen, Sami Kaappa, Andreas Lynge Vishart, Thomas Bligaard, Karsten Wedel Jacobsen

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

4 Sitaatiot (Scopus)
19 Lataukset (Pure)

Abstrakti

We introduce a method for global optimization of the structure of atomic systems that uses additional atoms with fractional existence. The method allows for movement of atoms over long distances bypassing energy barriers encountered in the conventional position space. The method is based on Gaussian processes, where the extrapolation to fractional existence is performed with a vectorial fingerprint. The method is applied to clusters and two-dimensional systems, where the fractional existence variables are optimized while keeping the atomic positions fixed on a lattice. Simultaneous optimization of atomic coordinates and existence variables is demonstrated on copper clusters of varying size. The existence variables are shown to speed up the global optimization of large and particularly difficult-to-optimize clusters.

AlkuperäiskieliEnglanti
Artikkeli214101
JulkaisuPhysical Review B
Vuosikerta107
Numero21
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Sormenjälki

Sukella tutkimusaiheisiin 'Machine-learning-enabled optimization of atomic structures using atoms with fractional existence'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä