Machine Learning for Forecasting Mid Price Movement using Limit Order Book Data

Paraskevi Nousi, Avraam Tsantekidis, Nikolaos Passalis, Adamantios Ntakaris, Juho Kanniainen, Anastasios Tefas, Moncef Gabbouj, Alexandros Iosifidis

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

8 Sitaatiot (Scopus)

Abstrakti

Forecasting the movements of stock prices is one the most challenging problems in financial markets analysis. In this paper, we use Machine Learning (ML) algorithms for the prediction of future price movements using limit order book data. Two different sets of features are combined and evaluated: handcrafted features based on the raw order book data and features extracted by ML algorithms, resulting in feature vectors with highly variant dimensionalities. Three classifiers are evaluated using combinations of these sets of features on two different evaluation setups and three prediction scenarios. Even though the large scale and high frequency nature of the limit order book poses several challenges, the scope of the conducted experiments and the significance of the experimental results indicate that Machine Learning highly befits this task carving the path towards future research in this field.
AlkuperäiskieliEnglanti
Sivut64722-64736
JulkaisuIEEE Access
Vuosikerta7
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

Sormenjälki

Sukella tutkimusaiheisiin 'Machine Learning for Forecasting Mid Price Movement using Limit Order Book Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä