Machine Learning Heuristics on Gingivobuccal Cancer Gene Datasets Reveals Key Candidate Attributes for Prognosis

Tanvi Singh, Girik Malik, Saloni Someshwar, Hien Thi Thu Le, Rathnagiri Polavarapu, Laxmi N. Chavali, Nidheesh Melethadathil, Vijayaraghava Seshadri Sundararajan, Jayaraman Valadi, P. B. Kavi Kishor, Prashanth Suravajhala

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    1 Sitaatiot (Scopus)
    11 Lataukset (Pure)

    Abstrakti

    Delayed cancer detection is one of the common causes of poor prognosis in the case of many cancers, including cancers of the oral cavity. Despite the improvement and development of new and efficient gene therapy treatments, very little has been carried out to algorithmically assess the impedance of these carcinomas. In this work, from attributes or NCBI’s oral cancer datasets, viz. (i) name, (ii) gene(s), (iii) protein change, (iv) condition(s), clinical significance (last reviewed). We sought to train the number of instances emerging from them. Further, we attempt to annotate viable attributes in oral cancer gene datasets for the identification of gingivobuccal cancer (GBC). We further apply supervised and unsupervised machine learning methods to the gene datasets, revealing key candidate attributes for GBC prognosis. Our work highlights the importance of automated identification of key genes responsible for GBC that could perhaps be easily replicated in other forms of oral cancer detection.

    AlkuperäiskieliEnglanti
    Artikkeli2379
    JulkaisuGenes
    Vuosikerta13
    Numero12
    DOI - pysyväislinkit
    TilaJulkaistu - jouluk. 2022
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Genetics
    • Genetics(clinical)

    Sormenjälki

    Sukella tutkimusaiheisiin 'Machine Learning Heuristics on Gingivobuccal Cancer Gene Datasets Reveals Key Candidate Attributes for Prognosis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä